Introduction to Diophantine Approximation
نویسنده
چکیده
In this article we formalize some results of Diophantine approximation, i.e. the approximation of an irrational number by rationals. A typical example is finding an integer solution (x, y) of the inequality |xθ − y| ¬ 1/x, where θ is a real number. First, we formalize some lemmas about continued fractions. Then we prove that the inequality has infinitely many solutions by continued fractions. Finally, we formalize Dirichlet’s proof (1842) of existence of the solution [12], [1].
منابع مشابه
Metrical Diophantine approximation for quaternions
The metrical theory of Diophantine approximation for quaternions is developed using recent results in the general theory. In particular, Quaternionic analogues of the classical theorems of Khintchine, Jarnı́k and Jarnı́k-Besicovitch are established. Introduction Diophantine approximation begins with a more quantitative understanding of the density of the rationals Q in the reals R. The starting p...
متن کاملErgodic Theory on Homogeneous Spaces and Metric Number Theory
Article outline This article gives a brief overview of recent developments in metric number theory, in particular, Diophantine approximation on manifolds, obtained by applying ideas and methods coming from dynamics on homogeneous spaces. Glossary 1. Definition: Metric Diophantine approximation 2. Basic facts 3. Introduction 4. Connection with dynamics on the space of lattices 5. Diophantine app...
متن کاملA Note on Metric Inhomogeneous Diophantine Approximation
An inhomogeneous version of a general form of the Jarn k-Besicovitch Theorem is proved. Dedicated to Professor F. Chong for his 80th birthday 1. Introduction In some respects, inhomogeneous Diophantine approximation is rather diierent from homogeneous Diophantine approximation. Results in the former, where the additional variables ooer extràdegrees of freedom', are sometimes sharper or easier t...
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملDiophantine Properties of Measures and Homogeneous Dynamics
This is a survey of the so-called “quantitative nondivergence” approach to metric Diophantine approximation developed approximately 10 years ago in my collaboration with Margulis. The goal of this paper is to place the theory of approximation on manifolds into a broader context of studying Diophantine properties of points generic with respect to certain measures on Rn. The correspondence betwee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Formalized Mathematics
دوره 23 شماره
صفحات -
تاریخ انتشار 2015